• Bmc Med Inform Decis · Jun 2016

    Temporal bone radiology report classification using open source machine learning and natural langue processing libraries.

    • Aaron J Masino, Robert W Grundmeier, Jeffrey W Pennington, John A Germiller, and E Bryan Crenshaw.
    • Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, 3535 Market Street, Suite 1024, Philadelphia, PA, 19104, USA. masinoa@email.chop.edu.
    • Bmc Med Inform Decis. 2016 Jun 6; 16: 65.

    BackgroundRadiology reports are a rich resource for biomedical research. Prior to utilization, trained experts must manually review reports to identify discrete outcomes. The Audiological and Genetic Database (AudGenDB) is a public, de-identified research database that contains over 16,000 radiology reports. Because the reports are unlabeled, it is difficult to select those with specific abnormalities. We implemented a classification pipeline using a human-in-the-loop machine learning approach and open source libraries to label the reports with one or more of four abnormality region labels: inner, middle, outer, and mastoid, indicating the presence of an abnormality in the specified ear region.MethodsTrained abstractors labeled radiology reports taken from AudGenDB to form a gold standard. These were split into training (80 %) and test (20 %) sets. We applied open source libraries to normalize and convert every report to an n-gram feature vector. We trained logistic regression, support vector machine (linear and Gaussian), decision tree, random forest, and naïve Bayes models for each ear region. The models were evaluated on the hold-out test set.ResultsOur gold-standard data set contained 726 reports. The best classifiers were linear support vector machine for inner and outer ear, logistic regression for middle ear, and decision tree for mastoid. Classifier test set accuracy was 90 %, 90 %, 93 %, and 82 % for the inner, middle, outer and mastoid regions, respectively. The logistic regression method was very consistent, achieving accuracy scores within 2.75 % of the best classifier across regions and a receiver operator characteristic area under the curve of 0.92 or greater across all regions.ConclusionsOur results indicate that the applied methods achieve accuracy scores sufficient to support our objective of extracting discrete features from radiology reports to enhance cohort identification in AudGenDB. The models described here are available in several free, open source libraries that make them more accessible and simplify their utilization as demonstrated in this work. We additionally implemented the models as a web service that accepts radiology report text in an HTTP request and provides the predicted region labels. This service has been used to label the reports in AudGenDB and is freely available.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.