Bmc Med Inform Decis
-
Bmc Med Inform Decis · Jun 2016
Temporal bone radiology report classification using open source machine learning and natural langue processing libraries.
Radiology reports are a rich resource for biomedical research. Prior to utilization, trained experts must manually review reports to identify discrete outcomes. The Audiological and Genetic Database (AudGenDB) is a public, de-identified research database that contains over 16,000 radiology reports. Because the reports are unlabeled, it is difficult to select those with specific abnormalities. We implemented a classification pipeline using a human-in-the-loop machine learning approach and open source libraries to label the reports with one or more of four abnormality region labels: inner, middle, outer, and mastoid, indicating the presence of an abnormality in the specified ear region. ⋯ Our results indicate that the applied methods achieve accuracy scores sufficient to support our objective of extracting discrete features from radiology reports to enhance cohort identification in AudGenDB. The models described here are available in several free, open source libraries that make them more accessible and simplify their utilization as demonstrated in this work. We additionally implemented the models as a web service that accepts radiology report text in an HTTP request and provides the predicted region labels. This service has been used to label the reports in AudGenDB and is freely available.
-
Bmc Med Inform Decis · Jun 2016
Multicenter StudyHow to improve vital sign data quality for use in clinical decision support systems? A qualitative study in nine Swedish emergency departments.
Vital sign data are important for clinical decision making in emergency care. Clinical Decision Support Systems (CDSS) have been advocated to increase patient safety and quality of care. However, the efficiency of CDSS depends on the quality of the underlying vital sign data. Therefore, possible factors affecting vital sign data quality need to be understood. This study aims to explore the factors affecting vital sign data quality in Swedish emergency departments and to determine in how far clinicians perceive vital sign data to be fit for use in clinical decision support systems. A further aim of the study is to provide recommendations on how to improve vital sign data quality in emergency departments. ⋯ Vital sign data quality in Swedish emergency departments is currently not fit for use by CDSS. To address both technical and organisational challenges, we propose five steps for vital sign data quality improvement to be implemented in emergency care settings.