-
- Luis E B Bettio, Anna R Patten, Joana Gil-Mohapel, Natasha F O'Rourke, Ronan P Hanley, Samantha Kennedy, Karthik Gopalakrishnan, Ana Lúcia S Rodrigues, Jeremy Wulff, and Brian R Christie.
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Neuroscience. 2016 Sep 22; 332: 212-22.
AbstractAdult hippocampal neurogenesis can be modulated by various physiological and pathological conditions, including stress, affective disorders, and several neurological conditions. Given the proposed role of this form of structural plasticity in the functioning of the hippocampus (namely learning and memory and affective behaviors), it is believed that alterations in hippocampal neurogenesis might underlie some of the behavioral deficits associated with these psychiatric and neurological conditions. Thus, the search for compounds that can reverse these deficits with minimal side effects has become a recognized priority. In the present study we tested the pro-neurogenic effects of isoxazole 9 (Isx-9), a small synthetic molecule that has been recently identified through the screening of chemical libraries in stem cell-based assays. We found that administration of Isx-9 for 14days was able to potentiate cell proliferation and increase the number of immature neurons in the hippocampal DG of adult rats. In addition, Isx-9 treatment was able to completely reverse the marked reduction in these initial stages of the neurogenic process observed in vehicle-treated animals (which were submitted to repeated handling and exposure to daily intraperitoneal injections). Based on these results, we recommend that future neurogenesis studies that require repeated handling and manipulation of animals should include a naïve (non-manipulated) control to determine the baseline levels of hippocampal cell proliferation and neuronal differentiation. Overall, these findings demonstrate that Isx-9 is a promising synthetic compound for the mitigation of stress-induced deficits in adult hippocampal neurogenesis. Future studies are thus warranted to evaluate the pro-neurogenic properties of Isx-9 in animal models of affective and neurological disorders associated with impaired hippocampal structural plasticity.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.