-
- M E Kriebel, F Llados, and J Vautrin.
- Department of Physiology, State University of New York Health Science Center at Syracuse 13210, USA.
- Neuroscience. 1996 Mar 1; 71 (1): 101-17.
AbstractMiniature endplate potentials were recorded from single frog muscle fibers before, during and after treatment with hypertonic saline (200-500 mM NaCl or Na gluconate added to frog saline). Miniature endplate potential amplitude distributions were plotted from small muscle fibers so that the modes and ratios of the skew-miniature endplate potential to bell-miniature endplate potential classes could be defined. Muscle fibers were voltage clamped with two electrodes to determine the input resistance before, during and after treatment. Input resistance increased from two to 100 times during treatment and rapidly fell towards control values (no more than 30% greater) when preparations were returned to normal frog saline. Short duration treatments with 200-300 mM hypertonic salines immediately increased frequencies (100-fold) of both skew-miniature endplate potential and bell-miniature endplate potential classes. Preparations when returned to normal frog saline after a few minutes of treatment showed control miniature endplate potential distributions within minutes. One to two hour treatments left only the skew-miniature endplate potential class and with hour-long recovery periods bell-miniature endplate potentials reappeared and ratios of skew-miniature endplate potential to bell-miniature endplate potential classes returned to control values. Treatment with 500 mM NaCl added to frog saline immediately increased the percentage of skew-miniature endplate potentials (from 2 to 50%) with little or no increase in overall miniature endplate potential frequencies. The mode of the skew-miniature endplate potential class was unchanged after hypertonic treatment, whereas that of the bell-miniature end plate potential class either remained about the same size or decreased depending on the duration of treatment. The number and percentage of giant-miniature endplate potentials belonging to the skew-miniature endplate potential class increased as a function of the duration of 200-300 mM hypertonic saline treatments. Most giant-miniature endplate potentials had a slow rising phase with a foot and/or breaks demonstrating a composite structure. Sequentially recorded giant-miniature endplate potentials had similar initial slopes indicating either repetitive releases from single sites or releases from cooperative sites. After hypertonic treatment the bell-miniature endplate potential size was never more than that expected with the increase (under 30%) in input resistance. The results presented here are completely different from those of Yu and Van der Kloot [(1991) J. Physiol. 433, 677-704] who reported that the bell-miniature endplate potential amplitude was increased two- to four-fold after hypertonic treatment. The wide range of results in the ratio of skew-miniature endplate potential to bell-miniature endplate potential classes is discussed in regards to the quantal hypothesis which is based on a single class of immutable amounts of transmitter; and, a hypothesis based on a dynamical process that meters transmitter in subunit amounts to control miniature endplate potential size and class during release.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.