• Osteoporos Int · Jan 2012

    Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs.

    • T Le Corroller, J Halgrin, M Pithioux, D Guenoun, P Chabrand, and P Champsaur.
    • Department of Radiology, Hôpital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, 13009 Marseille, France. Thomas.LeCorroller@ap-hm.fr
    • Osteoporos Int. 2012 Jan 1; 23 (1): 163-9.

    UnlabelledTwenty-one excised femurs were studied using (1) a high-resolution digital X-ray device to estimate three textural parameters, (2) dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD), and (3) mechanical tests to failure. Textural parameters significantly correlated with BMD (p < 0.05) and bone strength (p < 0.05). Combining texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) = 0.74 to adjusted r(2) =0.82 (p < 0.05).IntroductionThe purpose of this study is to determine if the combination of bone texture parameters using a new high-resolution X-ray device and BMD measurement by DXA provided a better prediction of femoral failure load than BMD evaluation alone.MethodsThe proximal ends of 21 excised femurs were studied using (1) a high-resolution digital X-ray device (BMA, D3A Medical Systems) to estimate three textural parameters: fractal parameter Hmean, co-occurrence, and run-length matrices, (2) DXA to measure BMD, and (3) mechanical tests to failure in a side-impact configuration. Regions of interest in the femoral neck, intertrochanteric region, and greater trochanter were selected for DXA and bone texture analysis. Every specimen was scanned twice with repositioning before mechanical testing to assess reproducibility using intraclass correlation coefficient (ICC) with 95% confidence interval. The prediction of femoral failure load was evaluated using multiple regression analysis.ResultsThirteen femoral neck and 8 intertrochanteric fractures were observed with a mean failure load of 2,612 N (SD, 1,382 N). Fractal parameter Hmean, co-occurrence, and run-length matrices each significantly correlated with site-matched BMD (p < 0.05) and bone strength (p < 0.05). The ICC of the textural parameters varied between 0.65 and 0.90. Combining bone texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) =0.74 to adjusted r(2) = 0.82 (p < 0.05).ConclusionIn these excised femurs, the combination of bone texture parameters with BMD demonstrated a better performance in the failure load prediction than that of BMD alone.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.