-
Review Meta Analysis
Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
- Dennis R Louie, Janice J Eng, Tania Lam, and Spinal Cord Injury Research Evidence (SCIRE) Research Team.
- University of British Columbia, Vancouver, Canada. r.louie@alumni.utoronto.ca.
- J Neuroeng Rehabil. 2015 Jan 1; 12: 82.
AbstractPowered robotic exoskeletons are an emerging technology of wearable orthoses that can be used as an assistive device to enable non-ambulatory individuals with spinal cord injury (SCI) to walk, or as a rehabilitation tool to improve walking ability in ambulatory individuals with SCI. No studies to date have systematically reviewed the literature on the efficacy of powered exoskeletons on restoring walking function. Our objective was to systematically review the literature to determine the gait speed attained by individuals with SCI when using a powered exoskeleton to walk, factors influencing this speed, and characteristics of studies involving a powered exoskeleton (e.g. inclusion criteria, screening, and training processes). A systematic search in computerized databases was conducted to identify articles that reported on walking outcomes when using a powered exoskeleton. Individual gait speed data from each study was extracted. Pearson correlations were performed between gait speed and 1) age, 2) years post-injury, 3) injury level, and 4) number of training sessions. Fifteen articles met inclusion criteria, 14 of which investigated the powered exoskeleton as an assistive device for non-ambulatory individuals and one which used it as a training intervention for ambulatory individuals with SCI. The mean gait speed attained by non-ambulatory participants (n = 84) while wearing a powered exoskeleton was 0.26 m/s, with the majority having a thoracic-level motor-complete injury. Twelve articles reported individual data for the non-ambulatory participants, from which a positive correlation was found between gait speed and 1) age (r = 0.27, 95 % CI 0.02-0.48, p = 0.03, 63 participants), 2) injury level (r = 0.27, 95 % CI 0.02-0.48, p = 0.03, 63 participants), and 3) training sessions (r = 0.41, 95 % CI 0.16-0.61, p = 0.002, 55 participants). In conclusion, powered exoskeletons can provide non-ambulatory individuals with thoracic-level motor-complete SCI the ability to walk at modest speeds. This speed is related to level of injury as well as training time.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.