J Neuroeng Rehabil
-
Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback. We developed a "virtual mirror" that displays a realistic full-body avatar that responds to full-body movements in all movement planes in real-time, and that allows for the scaling of visual feedback on movements in real-time. The primary objective of this proof-of-concept study was to assess the ability of healthy subjects to detect scaled feedback on trunk flexion movements. ⋯ The new "virtual mirror" extends existing VR systems for motor and pain rehabilitation by enabling the use of realistic full-body avatars and scaled feedback. Proof-of-concept was demonstrated for the assessment of body perception during active movement in healthy controls. The next step will be to apply this system to assessment of body perception disturbances in patients with chronic pain.
-
Review Meta Analysis
Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
Powered robotic exoskeletons are an emerging technology of wearable orthoses that can be used as an assistive device to enable non-ambulatory individuals with spinal cord injury (SCI) to walk, or as a rehabilitation tool to improve walking ability in ambulatory individuals with SCI. No studies to date have systematically reviewed the literature on the efficacy of powered exoskeletons on restoring walking function. Our objective was to systematically review the literature to determine the gait speed attained by individuals with SCI when using a powered exoskeleton to walk, factors influencing this speed, and characteristics of studies involving a powered exoskeleton (e.g. inclusion criteria, screening, and training processes). ⋯ Twelve articles reported individual data for the non-ambulatory participants, from which a positive correlation was found between gait speed and 1) age (r = 0.27, 95 % CI 0.02-0.48, p = 0.03, 63 participants), 2) injury level (r = 0.27, 95 % CI 0.02-0.48, p = 0.03, 63 participants), and 3) training sessions (r = 0.41, 95 % CI 0.16-0.61, p = 0.002, 55 participants). In conclusion, powered exoskeletons can provide non-ambulatory individuals with thoracic-level motor-complete SCI the ability to walk at modest speeds. This speed is related to level of injury as well as training time.