-
- Xue-Ming Hu, Shou-Bin Cao, Hai-Long Zhang, Dong-Mei Lyu, Li-Ping Chen, Heng Xu, Zhi-Qiang Pan, and Wen Shen.
- Department of Pain Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai, China Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- Mol Pain. 2016 Jan 1; 12.
BackgroundIncreasing evidence suggests that microRNAs are functionally involved in the initiation and maintenance of pain hypersensitivity, including chronic morphine analgesic tolerance, through the posttranscriptional regulation of pain-related genes. We have previously demonstrated that miR-219 regulates inflammatory pain in the spinal cord by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ). However, whether miR-219 regulates CaMKIIγ expression in the dorsal root ganglia to mediate morphine tolerance remains unclear.ResultsMiR-219 expression was downregulated and CaMKIIγ expression was upregulated in mouse dorsal root ganglia following chronic morphine treatment. The changes in miR-219 and CaMKIIγ expression closely correlated with the development of morphine tolerance, which was measured using the reduction of percentage of maximum potential efficiency to thermal stimuli. Morphine tolerance was markedly delayed by upregulating miR-219 expression using miR-219 mimics or downregulating CaMKIIγ expression using CaMKIIγ small interfering RNA. The protein and mRNA expression of brain-derived neurotrophic factor were also induced in dorsal root ganglia by prolonged morphine exposure in a time-dependent manner, which were transcriptionally regulated by miR-219 and CaMKIIγ. Scavenging brain-derived neurotrophic factor via tyrosine receptor kinase B-Fc partially attenuated morphine tolerance. Moreover, functional inhibition of miR-219 via miR-219-sponge in naive mice elicited thermal hyperalgesia and spinal neuronal sensitization, which were both suppressed by CaMKIIγ small interfering RNA or tyrosine receptor kinase B-Fc.ConclusionsThese results demonstrate that miR-219 contributes to the development of chronic tolerance to morphine analgesia in mouse dorsal root ganglia by targeting CaMKIIγ and enhancing CaMKIIγ-dependent brain-derived neurotrophic factor expression.© The Author(s) 2016.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.