• Neuroscience · Dec 2016

    Muscle fatigue effects can be anticipated to reproduce a movement kinematics learned without fatigue.

    • Florian Monjo and Nicolas Forestier.
    • Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424), UFR-SceM / STAPS / Université Savoie Mont-Blanc, 73376 Le Bourget du Lac, France. Electronic address: flomonjo@gmail.com.
    • Neuroscience. 2016 Dec 17; 339: 100-108.

    AbstractMuscle fatigue modifies the gain between motor command magnitude and the mechanical muscular response. In other words, post-fatigue, central drives to the muscles must increase to maintain a particular submaximum mechanical output. In this study, we tested the hypothesis that this modified gain can be predicted by the central nervous system (CNS) during discrete ballistic movements. In two separate experiments, subjects were required to perform shoulder flexions in standing and sitting positions at submaximum target peak accelerations. They were assisted with visual feedback informing them on their performance after each trial. Shoulder flexions were performed before and after fatiguing protocols of the focal muscles. Acceleration signals, focal and postural muscle electromyograms (EMGs) were recorded. The results demonstrated that participants were able to reach with precision the target acceleration during the first movements post-fatigue at the cost of significant increase in focal motor command magnitude. Decreased variance of peak accelerations associated with increased focal command variability was observed post-fatigue. During the standing experiment, postural muscle EMGs revealed that anticipatory postural adjustments (APAs) scaled to focal movement acceleration post-fatigue. All these results support that fatigue effects are taken into account during movement planning. Indeed, given that no feedback could enable participants to adjust acceleration during movement, this capacity to anticipate fatigue effects is the exclusive result of feedforward processes. To account for this prediction capacity, we discuss the role of fatigue-related modifications in sensory inputs from the working muscles.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…