• Neuroscience · Dec 2016

    Non-Viral Xylosyltransferase-1 siRNA Delivery as an Effective Alternative to Chondroitinase in an In Vitro Model of Reactive Astrocytes.

    • Mohammad T Abu-Rub, Ben Newland, Michelle Naughton, Wenxin Wang, Siobhan McMahon, and Abhay Pandit.
    • Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway, Ireland.
    • Neuroscience. 2016 Dec 17; 339: 267275267-275.

    AbstractReactive astrocytosis and the subsequent glial scar is ubiquitous to injuries of the central nervous system, especially spinal cord injury (SCI) and primarily serves to protect against further damage, but is also a prominent inhibitor of regeneration. Manipulating the glial scar by targeting chondroitin sulfate proteoglycans (CSPGs) has been the focus of much study as a means to improve axon regeneration and subsequently functional recovery. In this study we investigate the ability of small interfering RNA (siRNA) delivered by a non-viral polymer vector to silence the rate-limiting enzyme involved in CSPG synthesis. Gene expression of this enzyme, xylosyltransferase-1, was silenced by 65% in Neu7 astrocytes which conferred a reduced expression of CSPGs. Furthermore, conditioned medium taken from treated Neu7s, or co-culture experiments with dorsal root ganglia (DRG) showed that siRNA treatment resulted in a more permissive environment for DRG neurite outgrowth than treatment with chondroitinase ABC alone. These results indicate that there is a role for targeted siRNA therapy using polymeric vectors to facilitate regeneration of injured axons following central nervous system injury.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.