• Neuroscience · Dec 2016

    Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex.

    • Keisuke Kaneko, Yuko Koyanagi, Yoshiyuki Oi, and Masayuki Kobayashi.
    • Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
    • Neuroscience. 2016 Dec 17; 339: 548-560.

    AbstractPropofol is a major intravenous anesthetic that facilitates GABAA receptor-mediated inhibitory synaptic currents and modulates inward current (Ih), K(+), and voltage-gated Na(+) currents. This propofol-induced modulation of ionic currents changes intrinsic membrane properties and repetitive spike firing in cortical pyramidal neurons. However, it has been unknown whether propofol modulates these electrophysiological properties in GABAergic neurons, which express these ion channels at different levels. This study examined whether pyramidal and GABAergic neuronal properties are differentially modulated by propofol in the rat insular cortical slice preparation. We conducted multiple whole-cell patch-clamp recordings from pyramidal neurons and from GABAergic neurons, which were classified into fast-spiking (FS), low threshold spike (LTS), late-spiking (LS), and regular-spiking nonpyramidal (RSNP) neurons. We found that 100μM propofol hyperpolarized the resting membrane potential and decreased input resistance in all types of neurons tested. Propofol also potently suppressed, and in most cases eliminated, repetitive spike firing in all these neurons. However, the potency of the propofol-induced changes in membrane and firing properties is particularly prominent in pyramidal neurons. Using a low concentration of propofol clarified this tendency: 30μM propofol decreased the firing of pyramidal neurons but had little effect on GABAergic neurons. Pre-application of a GABAA receptor antagonist, picrotoxin (100μM), diminished the propofol-induced suppression of neural activities in both pyramidal and FS neurons. These results suggest that GABAergic neurons, especially FS neurons, are less affected by propofol than are pyramidal neurons and that propofol-induced modulation of the intrinsic membrane properties and repetitive spike firing are principally mediated by GABAA receptor-mediated tonic currents.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…