• J. Neurophysiol. · Apr 2003

    Comparative Study

    Evoked oscillations in the thalamo-cortical auditory system are present in anesthetized but not in unanesthetized rats.

    • Nathalie Cotillon-Williams and Jean-Marc Edeline.
    • Laboratoire de Neurobiologie de l'Apprentissage de la Mémoire et de la Communication (NAMC), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8620, Université Paris-Sud, Orsay, France.
    • J. Neurophysiol. 2003 Apr 1; 89 (4): 1968-84.

    AbstractOver the last decade, a large number of studies have characterized stimulus-evoked oscillations in the visual cortex of anesthetized and unanesthetized animals. Comparatively, only a few studies have been performed in auditory cortex. This study compared the tone-evoked oscillations detected from the same recording sites in the thalamo-cortical auditory system of unanesthetized and anesthetized rats. Simultaneous multiunit recordings were collected in auditory cortex, auditory thalamus, and the auditory sector of the reticular nucleus of restrained rats, which spontaneously shifted from waking (W) to slow-wave sleep (SWS) and paradoxical sleep (PS). Subsequently, the same recording sites were tested under pentobarbital anesthesia, then under high doses of diazepam, and finally under urethan anesthesia. Under these drugs, oscillations were detected in 54% of the recordings: one-half of them were stimulus-locked oscillations and were directly observed on peri-stimulus time histograms (PSTHs); one-half of them were non-stimulus-locked oscillations and were detected on autocorrelograms. Spontaneous oscillations were present for 17% of the recordings. During SWS, only non-stimulus-locked oscillations were observed for a small percentage of recordings (12%). This percentage did not differ significantly from the one of spontaneous oscillations obtained during SWS (8%). No oscillations were found in W and PS. Both under anesthesia and in SWS, the frequency range of the oscillations was 5-15 Hz, and there was no frequency difference between evoked and spontaneous oscillations. Although surprising, the absence of oscillations in awake animals may allow each neuron to process acoustic information independently of its neighbors and may in fact benefit auditory perception.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.