• J. Neurophysiol. · Sep 2000

    Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.

    • V Aroniadou-Anderjaska, F M Zhou, C A Priest, M Ennis, and M T Shipley.
    • Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. vanderjaska@usuhs.mil
    • J. Neurophysiol. 2000 Sep 1; 84 (3): 1194-203.

    AbstractOlfactory receptor neurons of the nasal epithelium send their axons, via the olfactory nerve (ON), to the glomeruli of the olfactory bulb (OB), where the axon terminals form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the OB, and with juxtaglomerular (JG) interneurons. Many JG cells are GABAergic. Here we show that, despite the absence of conventional synapses, GABA released from JG cells activates GABA(B) receptors on ON terminals and inhibits glutamate release both tonically and in response to ON stimulation. Field potential recordings and current-source density analysis, as well as intracellular and whole cell recording techniques were used in rat OB slices. Baclofen (2-5 microM), a GABA(B) agonist, completely suppressed ON-evoked synaptic responses of both mitral/tufted cells and JG cells, with no evidence for postsynaptic effects. Baclofen (0.5-1 microM) also reversed paired-pulse depression (PPD) of mitral/tufted cell responses to paired-pulse facilitation (PPF), and reduced depression of JG cell excitatory postsynaptic currents (EPSCs) during repetitive ON stimulation. These results suggest that baclofen reduced the probability of glutamate release from ON terminals. The GABA(B) antagonists CGP35348 or CGP55845A increased mitral/tufted cell responses evoked by single-pulse ON stimulation, suggesting that glutamate release from ON terminals is tonically suppressed via GABA(B) receptors. The same antagonists reduced PPD of ON-evoked mitral/tufted cell responses at interstimulus intervals 50-400 ms. This finding suggests that a single ON impulse evokes sufficient GABA release, presumably from JG cells, to activate GABA(B) receptors on ON terminals. Thus GABA(B) heteroreceptors on ON terminals are activated by ambient levels of extrasynaptic GABA, and by ON input to the OB. The time course of ON-evoked, GABA(B) presynaptic inhibition suggests that neurotransmission to M/T cells and JG cells will be significantly suppressed when ON impulses arrive in glomeruli at 2.5-20 Hz. GABA(B) receptor-mediated presynaptic inhibition of sensory input to the OB may play an important role in shaping the activation pattern of the OB glomeruli during olfactory coding.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.