• Curr Top Microbiol · Jan 2008

    Review

    Genetic dissection of host resistance to Mycobacterium tuberculosis: the sst1 locus and the Ipr1 gene.

    • I Kramnik.
    • Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA. ikramnik@hsph.harvard.edu
    • Curr Top Microbiol. 2008 Jan 1; 321: 123-48.

    AbstractGenetic variation of the host significantly contributes to dramatic differences in the outcomes of natural infection with virulent Mycobacterium tuberculosis (MTB) in humans, as well as in experimental animal models. Host resistance to tuberculosis is a complex multifactorial genetic trait in which many genetic polymorphisms contribute to the phenotype, while their individual contributions are influenced by gene-gene and gene-environment interactions. The most epidemiologically significant form of tuberculosis infection in humans is pulmonary tuberculosis. Factors that predispose immunocompetent individuals to this outcome, however, are largely unknown. Using an experimental mouse model of infection with virulent MTB for the genetic analysis of host resistance to this pathogen, we have identified several tuberculosis susceptibility loci in otherwise immunocompetent mice. The sst1 locus has been mapped to mouse chromosome 1 and shown to be especially important for control of pulmonary tuberculosis. Rampant progression of tuberculosis infection in the lungs of the sst1-susceptible mouse was associated with the development of necrotic lung lesions, which was prevented by the sst1-resistant allele. Using a positional cloning approach, we have identified a novel host resistance gene, Ipr1, which is encoded within the sst1 locus and mediates innate immunity to the intracellular bacterial pathogens MTB and Listeria monocytogenes. The sst1 locus and the Ipr1 gene participate in control of intracellular multiplication of virulent MTB and have an effect on the infected macrophages' mechanism of cell death. The Ipr1 is an interferon-inducible nuclear protein that dynamically associates with other nuclear proteins in macrophages primed with interferons or infected with MTB. Several of the Ipr1-interacting proteins are known to participate in regulation of transcription, RNA processing, and apoptosis. Further biochemical analysis of the Ipr1-mediated pathway will help delineate a mechanism of innate immunity that is especially important for control of tuberculosis progression in the lungs.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…