• J. Neurosci. · Aug 1994

    Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface.

    • A Berkowitz and P S Stein.
    • Department of Biology, Washington University, St. Louis, Missouri 63130.
    • J. Neurosci. 1994 Aug 1; 14 (8): 5089-104.

    AbstractWe recorded the activity of descending propriospinal axons at the caudal end of a seven-segment (D3-D9) turtle spinal cord preparation. These seven spinal segments contain sufficient neural circuitry to select and generate fictive rostral scratching or fictive pocket scratching in response to tactile stimulation in the appropriate region of the body surface. Each turtle received two spinal transections, one just caudal to the forelimb enlargement and one in the middle of the hindlimb enlargement. Descending propriospinal axons were recorded extracellularly from the hindlimb enlargement on one side of the body, while the ipsilateral or contralateral body surface was stimulated. Concurrent recordings were made from ipsilateral and contralateral hindlimb muscle nerves to monitor fictive scratch motor patterns. We found that most tactilely responsive descending propriospinal axons were excited by stimulation anywhere within the rostral scratch or pocket scratch receptive fields on at least one side of the body, and often on both sides. The activity of these neurons was usually rhythmically modulated during fictive rostral scratching and fictive pocket scratching. Many neurons with large excitatory receptive fields generated action potentials at their highest rate during stimulation of a particular region of the body surface on one side, and generated action potentials at progressively lower rates during stimulation of sites progressively farther away. Thus, these units were broadly tuned to a region of the body surface. Some were tuned to a region of the rostral scratch receptive field and others were tuned to a region of the pocket scratch receptive field. These data suggest that selection of the appropriate form of scratching, rostral or pocket, may be mediated by populations of broadly tuned neurons rather than by highly specialized neurons.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.