• Neuroscience · Mar 2017

    Group comparison of cortical fiber connectivity map: An application between post-stroke patients and healthy subjects.

    • Kai Liu, Teng Zhang, Winnie C W Chu, Vincent C T Mok, Defeng Wang, and Lin Shi.
    • Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
    • Neuroscience. 2017 Mar 6; 344: 15-24.

    AbstractStructural connectome measurement combined with diffusion magnetic resonance imaging (MRI) and tractography allows generation of a whole-brain connectome. However, current cortical structural connectivity (SC) measurements have not been well combined with the vertex-wise multi-subjects statistical analysis. The aim of this study was to examine the feasibility of using group comparison vertex-wise analysis for cortical SC measurement. A fiber connectivity density (FiCD) method based on a combination of a diffusion fiber tracking technique and cortical surface-based analysis was used to measure the whole-brain cortical SC map (FiCD map). A public MRI dataset (GigaDB) was employed to evaluate the reproducibility of the FiCD method. For group comparison, 14 post-stroke patients (mean age, 68.36±7.33y) and 19 healthy participants (mean age, 66.84±8.58y) had FiCD measurement. The intergroup comparison of the FiCD map was performed using vertex-wise multi-subject statistical analysis. Reliability testing showed the mean intra- and inter-subject FiCD variability was 3.51±2.12% and 19.44±4.79%, respectively. The group comparison of the whole-brain FiCD identified cortical regions with altered FiCD values, and there was a spatial consistency between the cortical clusters with low FiCD values and the subcortical lesions of patients. This study demonstrated the feasibility of vertex-wise group comparison for evaluating cortical fiber connectivity density. The FiCD method has good intra- and inter-individual reproducibility, and accurately reflects the affected cortical regions in post-stroke patients. This method may be helpful for neuroscience research.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.