• J Clin Monit Comput · Feb 2018

    Assessing nitrous oxide effect using electroencephalographically-based depth of anesthesia measures cortical state and cortical input.

    • Levin Kuhlmann and Liley David T J DTJ Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia..
    • Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia. levink@unimelb.edu.au.
    • J Clin Monit Comput. 2018 Feb 1; 32 (1): 173-188.

    AbstractExisting electroencephalography (EEG) based depth of anesthesia monitors cannot reliably track sedative or anesthetic states during n-methyl-D-aspartate (NMDA) receptor antagonist based anesthesia with ketamine or nitrous oxide (N2O). Here, a physiologically-motivated depth of anesthesia monitoring algorithm based on autoregressive-moving-average (ARMA) modeling and derivative measures of interest, Cortical State (CS) and Cortical Input (CI), is retrospectively applied in an exploratory manner to the NMDA receptor antagonist N2O, an adjuvant anesthetic gas used in clinical practice. Composite Cortical State (CCS) and Composite Cortical State distance (CCSd), two new modifications of CS, along with CS and CI were evaluated on electroencephalographic (EEG) data of healthy control individuals undergoing N2O inhalation up to equilibrated peak gas concentrations of 20, 40 or 60% N2O/O2. In particular, CCSd has been devised to vary consistently for increasing levels of anesthetic concentration independent of the anesthetic's microscopic mode of action for both N2O and propofol. The strongest effects were observed for the 60% peak gas concentration group. For the 50-60% peak gas levels, individuals showed statistically significant reductions in responsiveness compared to rest, and across the group CS and CCS increased by 39 and 42%, respectively, while CCSd was found to decrease by 398%. On the other hand a clear conclusion regarding the changes in CI could not be reached. These results indicate that, contrary to previous depth of anesthesia monitoring measures, the CS, CCS, and especially CCSd measures derived from frontal EEG are potentially useful for differentiating gas concentration and responsiveness levels in people under N2O. On the other hand, determining the utility of CI in this regard will require larger sample sizes and potentially higher gas concentrations. Future work will assess the sensitivity of CS-based and CI measures to other anesthetics and their utility in a clinical environment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.