-
Experimental neurology · May 2012
ReviewNeuronal plasticity after a human spinal cord injury: positive and negative effects.
- Volker Dietz.
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland. vdietz@paralab.balgrist.ch
- Exp. Neurol. 2012 May 1; 235 (1): 110-5.
AbstractIn patients suffering an incomplete spinal cord injury (SCI) an improvement in walking function can be achieved by providing a functional training with an appropriate afferent input. In contrast, in immobilized incomplete and complete subjects a negative neuroplasticity leads to a neuronal dysfunction. After an SCI, neuronal centers below the level of lesion exhibit plasticity that either can be exploited by specific training paradigms or undergo a degradation of function due to the loss of appropriate input. Load- and hip-joint-related afferent inputs seem to be of crucial importance for the generation of a locomotor pattern and, consequently, the effectiveness of the locomotor training. In severely affected SCI subjects rehabilitation robots allow for a longer and more intensive training and can provide feedback information. Conversely, in severely affected chronic SCI individuals without functional training the locomotor activity in the leg muscles exhausts rapidly during assisted locomotion. This is accompanied by a shift from early to dominant late spinal reflex components. The exhaustion of locomotor activity is also observed in non-ambulatory patients with an incomplete SCI. It is assumed that in chronic SCI the patient's immobility results in a reduced input from supraspinal and peripheral sources and leads to a dominance of inhibitory drive within spinal neuronal circuitries underlying locomotor pattern and spinal reflex generation. A training with an enhancement of an appropriate proprioceptive input early after an SCI might serve as an intervention to prevent neuronal dysfunction.Copyright © 2011 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.