-
- Hamid Karimi-Rouzbahani, Nasour Bagheri, and Reza Ebrahimpour.
- Department of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Neuroscience. 2017 May 4; 349: 48-63.
AbstractHumans perform object recognition effortlessly and accurately. However, it is unknown how the visual system copes with variations in objects' appearance and the environmental conditions. Previous studies have suggested that affine variations such as size and position are compensated for in the feed-forward sweep of visual information processing while feedback signals are needed for precise recognition when encountering non-affine variations such as pose and lighting. Yet, no empirical data exist to support this suggestion. We systematically investigated the impact of the above-mentioned affine and non-affine variations on the categorization performance of the feed-forward mechanisms of the human brain. For that purpose, we designed a backward-masking behavioral categorization paradigm as well as a passive viewing EEG recording experiment. On a set of varying stimuli, we found that the feed-forward visual pathways contributed more dominantly to the compensation of variations in size and position compared to lighting and pose. This was reflected in both the amplitude and the latency of the category separability indices obtained from the EEG signals. Using a feed-forward computational model of the ventral visual stream, we also confirmed a more dominant role for the feed-forward visual mechanisms of the brain in the compensation of affine variations. Taken together, our experimental results support the theory that non-affine variations such as pose and lighting may need top-down feedback information from higher areas such as IT and PFC for precise object recognition.Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.