• Neuroscience · May 2017

    Role of thrombin-PAR1-PKCθ/δ axis in brain pericytes in thrombin-induced MMP-9 production and blood-brain barrier dysfunction in vitro.

    • Takashi Machida, Shinya Dohgu, Fuyuko Takata, Junichi Matsumoto, Ikuya Kimura, Mariko Koga, Keiko Nakamoto, Atsushi Yamauchi, and Yasufumi Kataoka.
    • Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
    • Neuroscience. 2017 May 14; 350: 146-157.

    AbstractThrombin, an essential component in the coagulation cascade, participates in the pathogenesis of brain diseases, such as ischemic stroke, intracerebral hemorrhage, Alzheimer's disease and Parkinson's disease through blood-brain barrier (BBB) dysfunction. It is thought that the thrombin-matrix metalloproteinase (MMP)-9 axis is an important process in the pathogenesis of neurovascular disease, such as BBB dysfunction. We recently reported that brain pericytes are the most MMP-9-releasing cells in response to thrombin stimulation among the BBB-constituting cells. This thrombin-induced MMP-9 release is partially due to protease-activated receptor (PAR1), one of the specific thrombin receptors. Then, we evaluated the intracellular signaling pathways involved in MMP-9 release and the contribution of thrombin-reactive brain pericytes to BBB dysfunction. PKC activator evoked MMP-9 release from brain pericytes. The thrombin-induced MMP-9 release was inhibited by U0126, LY294002, Go6976, and Go6983. However, Go6976 decreased phosphorylation levels of PKCθ and Akt, and Go6983 decreased phosphorylation levels of PKCδ and extracellular signal-regulated kinase (ERK). Additionally, treatment of pericytes with thrombin or PAR1-activating peptide stimulated PKCδ/θ signaling. These substances impaired brain endothelial barrier function in the presence of brain pericytes. Brain pericytes function through two independent downstream signaling pathways via PAR1 activation to release MMP-9 in response to thrombin - the PKCθ-Akt pathway and the PKCδ-ERK1/2 pathway. These pathways participate in PAR1-mediated MMP-9 release from pericytes, which leads to BBB dysfunction. Brain pericytes and their specific signaling pathways could provide novel therapeutic targets for thrombin-induced neurovascular diseases.Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.