• Neuroscience · Jun 2017

    Differential roles for Akt and mTORC1 in the hypertrophy of Pten mutant neurons, a cellular model of brain overgrowth disorders.

    • Ina Nikolaeva, Tatiana M Kazdoba, Beth Crowell, and Gabriella D'Arcangelo.
    • Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Molecular Biosciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
    • Neuroscience. 2017 Jun 23; 354: 196-207.

    AbstractMutations in the PI3K/Akt/mTOR signaling pathway or in the upstream negative regulator Pten cause human brain overgrowth disorders, such as focal cortical dysplasia and megalencephaly, and are characterized by the presence of hypertrophic neurons. These disorders often have a pediatric onset and a high comorbidity with drug-resistant epilepsy; however, effective pharmacological treatments are lacking. We established forebrain excitatory neuron-specific Pten-deficient cultures as an in vitro model of brain overgrowth disorders, and investigated the effects of this Pten mutation on PI3K/Akt/mTOR signaling and neuronal growth. Mutant neurons exhibit excessive PI3K/Akt/mTOR signaling activity, enlarged somas and increased dendritic arborization. To understand the contributions of Akt and mTORC1 kinases to the hypertrophy phenotype, we evaluated the effects of short-term treatment with the Akt inhibitor MK-2206, and the mTORC1 inhibitor RAD001, which have shown safety and efficacy in human cancer clinical trials. We found that RAD001 treatment only partially reversed the morphological abnormalities of Pten mutant neurons, whereas MK-2206 treatment completely rescued the phenotype. Interestingly, neither treatment altered the size or morphology of normal neurons. Our results suggest that Akt is a major determinant of neuronal growth, and that Akt inhibition may be an effective strategy for pharmacological intervention in brain overgrowth disorders.Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.