• Spine · Nov 2017

    Case Reports

    Multi-Level 3D Printing Implant For Reconstructing Cervical Spine With Metastatic Papillary Thyroid Carcinoma.

    • Xiucan Li, Yiguo Wang, Yongfei Zhao, Jianheng Liu, Songhua Xiao, and Keya Mao.
    • Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
    • Spine. 2017 Nov 15; 42 (22): E1326E1330E1326-E1330.

    UnlabelledMINI: A 3D printing technology is proposed for reconstructing multilevel cervical spine (C2-C4) after resection of metastatic papillary thyroid carcinoma. The personalized porous implant printed in Ti6AL4V provided excellent physicochemical properties and biological performance, including biocompatibility, osteogenic activity, and bone ingrowth effect.Study DesignA unique case report.ObjectiveA three-dimensional (3D) printing technology is proposed for reconstructing multilevel cervical spine (C2-C4) after resection of metastatic papillary thyroid carcinoma in a middle-age female patient.Summary Of Background DataPapillary thyroid carcinoma is a malignant neoplasm with a relatively favorable prognosis. A metastatic lesion in multilevel cervical spine (C2-C4) destroys neurological functions and causes local instability. Radical excision of the metastasis and reconstruction of the cervical vertebrae sequence conforms with therapeutic principles, whereas the special-shaped multilevel upper-cervical spine requires personalized implants. 3D printing is an additive manufacturing technology that produces personalized products by accurately layering material under digital model control via a computer. Reporting of this recent technology for reconstructing multilevel cervical spine (C2-C4) is rare in the literature.MethodsAnterior-posterior surgery was performed in one stage. Radical resection of the metastatic lesion (C2-C4) and thyroid gland, along with insertion of a personalized implant manufactured by 3D printing technology, were performed to rebuild the cervical spine sequences. The porous implant was printed in Ti6AL4V with perfect physicochemical properties and biological performance, such as biocompatibility and osteogenic activity. Finally, lateral mass screw fixation was performed via a posterior approach.ResultsPatient neurological function gradually improved after the surgery. The patient received 11/17 on the Japanese Orthopedic Association scale and ambulated with a personalized skull-neck-thorax orthosis on postoperative day 11. She received radioiodine I therapy. The plane x-rays and computed tomography revealed no implant displacement or subsidence at the 12-month follow-up mark.ConclusionThe presented case substantiates the use of 3D printing technology, which enables the personalization of products to solve unconventional problems in spinal surgery.Level Of Evidence5.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…