• Neuroscience · Jul 2017

    Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia-reperfusion brain injury.

    • Yong-Ming Zhu, Xue Gao, Yong Ni, Wei Li, Thomas A Kent, Shi-Gang Qiao, Chen Wang, Xiao-Xuan Xu, and Hui-Ling Zhang.
    • Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
    • Neuroscience. 2017 Jul 25; 356: 125-141.

    AbstractCerebral ischemia leads to astrocyte's activation and glial scar formation. Glial scar can inhibit axonal regeneration during the recovery phase. It has demonstrated that sevoflurane has neuroprotective effects against ischemic stroke, but its effects on ischemia-induced formation of astrogliosis and glial scar are unknown. This study was designed to investigate the effect of sevoflurane postconditioning on astrogliosis and glial scar formation in ischemic stroke model both in vivo and in vitro. The results showed that 2.5% of sevoflurane postconditioning could significantly reduce infarction volume and improve neurologic deficits. And it could also decrease the expression of the glial scar marker glial fibrillary acidic protein (GFAP), neurocan and phosphacan in the peri-infarct region and markedly reduce the thickness of glial scar after ischemia/reperfusion (I/R). Consistent with the in vivo data, in the oxygen and glucose deprivation/reoxygenation (OGD/Re) model, sevoflurane postconditioning could protect astrocyte against OGD/Re-induced injury, decrease the expression of GFAP, neurocan and phosphacan. Further studies demonstrated that sevoflurane postconditioning could down-regulate the expression of Lamp1 and active cathepsin B, and block I/R or OGD/Re-induced release of cathepsin B from the lysosomes into cytoplasm. In order to confirm whether inhibition of cathepsin B could attenuate the formation of glial scar, we used cathepsin B inhibitor CA-074Me as a positive control. The results showed that inhibition of cathepsin B could decrease the expression of GFAP, neurocan and phosphacan. Taken together, sevoflurane postconditioning can attenuate astrogliosis and glial scar formation after ischemic stroke, associating with inhibition of the activation and release of lysosomal cathepsin B.Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…