• Neuroscience · Oct 2017

    Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis.

    • Mingchen C Jiang, Adesoji Adimula, Derin Birch, and Charles J Heckman.
    • Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA. Electronic address: m-jiang@northwestern.edu.
    • Neuroscience. 2017 Oct 24; 362: 33-46.

    AbstractHyperexcitability is hypothesized to contribute to the degeneration of spinal motoneurons (MNs) in amyotrophic lateral sclerosis (ALS). Studies, thus far, have not linked hyperexcitability to the intrinsic properties of MNs in the adult ALS mouse model with the G93A-mutated SOD1 protein (mSOD1G93A). In this study, we obtained two types of measurements: ventral root recordings to assess motor output and intracellular recordings to assess synaptic properties of individual MNs. All studies were carried out in an in vitro preparation of the sacral spinal cords of mSOD1G93A mice and their non-transgenic (NT) littermates, both in the age range of 50-90days. Ventral root recordings revealed that maximum compound action potentials (coAPs) evoked by a short-train stimulation of corresponding dorsal roots were similar between the two types of mice. Although the progressive depression of coAPs was present during the train stimulation in all recordings, the coAP depression in mSOD1G93A mice was to a lesser extent, which suggests an increased firing tendency in mSOD1G93A MNs. Intracellular recordings showed no changes in fast excitatory postsynaptic potentials (EPSPs) in mSOD1G93A MNs. However, recording did show that oscillating EPSPs (oEPSPs) were induced by poly-EPSPs at a higher frequency and by less-intense electrical stimulation in mSOD1G93A MNs. These oEPSPs were dependent upon the activities of spinal network and N-methyl-d-aspartate receptors (NMDARs), and were subjected to riluzole modulation. Taken together, these findings revealed abnormal electrophysiology in mSOD1G93A MNs that could underlie ALS excitotoxicity.Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.