-
- K Wu and L S Leung.
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada N6A 5A5.
- Neuroscience. 2003 Jan 1; 116 (2): 599-616.
AbstractWe used kainic acid in rats as an animal model of temporal lobe epilepsy, and studied the synaptic transmission in hippocampal subfield CA1 of urethane-anesthetized rats in vivo. Dendritic currents were revealed by field potential mapping, using a single micropipette or a 16-channel silicon probe, followed by current source density analysis. We found that the population excitatory postsynaptic potentials in the basal dendrites and distal apical dendrites of CA1 were increased in kainate-treated as compared with control rats following paired-pulse, but not single-pulse, stimulation of CA3b or medial perforant path. In contrast, the trisynaptic midapical dendritic response in CA1 following medial perforant path stimulation was decreased in kainate-treated as compared with control rats. Increased coupling between excitatory postsynaptic potential and the population spike in CA1 was found after kainate seizures. Short-latency, presumably monosynaptic CA1 population spikes following medial perforant path stimulation was found in kainate-treated but not control rats. An enhancement of dendritic excitability was evidenced by population spikes that invaded into or originated from the distal apical dendrites of CA1 in kainate-treated but not control rats. Reverberation of hippocampo-entorhinal activity was evidenced by recurrent excitation of CA1 following CA3b stimulation in kainate-treated but not control rats. Blockade of inhibition by intraventricularly administered bicuculline induced excitatory potentials in CA1 that were stronger and more prolonged in kainate-treated than control rats. The bicuculline-induced excitation was mainly blocked by non-N-methyl-D-aspartate receptor antagonists. We conclude that kainate seizures induced disinhibition in CA1 that unveiled excitation at the basal and distal apical dendrites, resulting in enhancement of the direct entorhinal cortex to CA1 input and reverberations via the hippocampo-entorhinal loop. These changes in the output of the hippocampus from CA1 are likely detrimental to the behavioral functions of the hippocampus and they may contribute to increased seizure susceptibility after kainate seizures.Copyright 2003 Published by Elsevier Sceince Ltd on behalf of IBRO
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.