• Current biology : CB · Nov 2001

    Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses.

    • K Fouad, V Pedersen, M E Schwab, and C Brösamle.
    • Chair of Neuroscience, Brain Research Institute, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland.
    • Curr. Biol. 2001 Nov 13; 11 (22): 1766-70.

    AbstractThe adult central nervous system (CNS) of higher vertebrates displays a limited ability for self repair after traumatic injuries, leading to lasting functional deficits [1]. Small injuries can result in transient impairments, but the mechanisms of recovery are poorly understood [2]. At the cortical level, rearrangements of the sensory and motor representation maps often parallel recovery [3,4]. In the sensory system, studies have shown that cortical and subcortical mechanisms contribute to map rearrangements [5,6], but for the motor system the situation is less clear. Here we show that large-scale structural changes in the spared rostral part of the spinal cord occur simultaneously with shifts of a hind-limb motor cortex representation after traumatic spinal-cord injury. By intracortical microstimulation, we defined a cortical area that consistently and exclusively yielded hind-limb muscle responses in normal adult rats. Four weeks after a bilateral transsection of the corticospinal tract (CST) in the lower thoracic spinal cord, we again stimulated this cortical field and found forelimb, whisker, and trunk responses, thus demonstrating reorganization of the cortical motor representation. Anterograde tracing of corticospinal fibers originating from this former hind-limb area revealed that sprouting greatly increased the normally small number of collaterals that lead into the cervical spinal cord rostral to the lesion. We conclude that the corticospinal motor system has greater potential to adapt structurally to lesions than was previously believed and hypothesize that this spontaneous growth response is the basis for the observed motor representation rearrangements and contributes to functional recovery after incomplete lesions.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…