• Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2007

    TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs.

    • Kazutoshi Hamanaka, Ming-Yuan Jian, David S Weber, Diego F Alvarez, Mary I Townsley, Abu B Al-Mehdi, Judy A King, Wolfgang Liedtke, and James C Parker.
    • Department of Physiology, College of Medicine, MSB 3074, University of South Alabama, 307 Univ. Blvd., Mobile, AL 36688, USA.
    • Am. J. Physiol. Lung Cell Mol. Physiol. 2007 Oct 1; 293 (4): L923-32.

    AbstractWe have previously implicated calcium entry through stretch-activated cation channels in initiating the acute pulmonary vascular permeability increase in response to high peak inflation pressure (PIP) ventilation. However, the molecular identity of the channel is not known. We hypothesized that the transient receptor potential vanilloid-4 (TRPV4) channel may initiate this acute permeability increase because endothelial calcium entry through TRPV4 channels occurs in response to hypotonic mechanical stress, heat, and P-450 epoxygenase metabolites of arachidonic acid. Therefore, permeability was assessed by measuring the filtration coefficient (K(f)) in isolated perfused lungs of C57BL/6 mice after 30-min ventilation periods of 9, 25, and 35 cmH(2)O PIP at both 35 degrees C and 40 degrees C. Ventilation with 35 cmH(2)O PIP increased K(f) by 2.2-fold at 35 degrees C and 3.3-fold at 40 degrees C compared with baseline, but K(f) increased significantly with time at 40 degrees C with 9 cmH(2)O PIP. Pretreatment with inhibitors of TRPV4 (ruthenium red), arachidonic acid production (methanandamide), or P-450 epoxygenases (miconazole) prevented the increases in K(f). In TRPV4(-/-) knockout mice, the high PIP ventilation protocol did not increase K(f) at either temperature. We have also found that lung distention caused Ca(2+) entry in isolated mouse lungs, as measured by ratiometric fluorescence microscopy, which was absent in TRPV4(-/-) and ruthenium red-treated lungs. Alveolar and perivascular edema was significantly reduced in TRPV4(-/-) lungs. We conclude that rapid calcium entry through TRPV4 channels is a major determinant of the acute vascular permeability increase in lungs following high PIP ventilation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…