American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2007
TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs.
We have previously implicated calcium entry through stretch-activated cation channels in initiating the acute pulmonary vascular permeability increase in response to high peak inflation pressure (PIP) ventilation. However, the molecular identity of the channel is not known. We hypothesized that the transient receptor potential vanilloid-4 (TRPV4) channel may initiate this acute permeability increase because endothelial calcium entry through TRPV4 channels occurs in response to hypotonic mechanical stress, heat, and P-450 epoxygenase metabolites of arachidonic acid. ⋯ We have also found that lung distention caused Ca(2+) entry in isolated mouse lungs, as measured by ratiometric fluorescence microscopy, which was absent in TRPV4(-/-) and ruthenium red-treated lungs. Alveolar and perivascular edema was significantly reduced in TRPV4(-/-) lungs. We conclude that rapid calcium entry through TRPV4 channels is a major determinant of the acute vascular permeability increase in lungs following high PIP ventilation.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2007
Tryptophan hydroxylase 1 knockout and tryptophan hydroxylase 2 polymorphism: effects on hypoxic pulmonary hypertension in mice.
Serotonin [5-hydroxytryptamine (5-HT)] biosynthesis depends on two rate-limiting tryptophan hydroxylases (Tph): Tph1, which is expressed in peripheral organs, and Tph2, which is expressed in neurons. Because 5-HT is involved in pulmonary hypertension (PH), we investigated whether genetic variations in Tph1 and/or Tph2 affected PH development in mice. To examine the functional impact of peripheral Tph1 deficiency on hypoxic PH, we used Tph1(-/-) mice characterized by very low 5-HT synthesis rates and contents in the gut and lung and increased 5-HT synthesis in the forebrain. ⋯ Forebrain Tph activity was greater and hypoxic PH was more severe in C57Bl/6 and 129X1/SvJ mice homozygous for the 1473C allele than in DBA/2 and BALB/cJ mice homozygous for the 1473G allele. p-Chlorophenylalanine reduced PH in all groups and abolished the difference in PH severity across mouse strains. Hypoxia increased 5-hydroxytryptophan accumulation but decreased 5-HT contents in the forebrain and lung, suggesting accelerated 5-HT turnover during hypoxia. These results provide evidence that dysregulation of 5-HT synthesis is closely linked to the hypoxic PH phenotype in mice and that Tph1 and Tph2 may contribute to PH development.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2007
Comparative StudyHypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells.
Acute hypoxia causes pulmonary vasoconstriction and coronary vasodilation. The divergent effects of hypoxia on pulmonary and coronary vascular smooth muscle cells suggest that the mechanisms involved in oxygen sensing and downstream effectors are different in these two types of cells. Since production of reactive oxygen species (ROS) is regulated by oxygen tension, ROS have been hypothesized to be a signaling mechanism in hypoxia-induced pulmonary vasoconstriction and vascular remodeling. ⋯ Furthermore, chronic treatment with endothelin-1, a potent vasoconstrictor and mitogen, caused a significant increase in ROS production in both PASMC and CASMC. The inhibitory effect of acute hypoxia on ROS production in PASMC was also accelerated in cells chronically treated with endothelin-1. While the decreased ROS in PASMC and CASMC after acute exposure to hypoxia may reflect the lower level of oxygen substrate available for ROS production, the increased ROS production in PASMC during chronic hypoxia may reflect a pathophysiological response unique to the pulmonary vasculature that contributes to the development of pulmonary vascular remodeling in patients with hypoxia-associated pulmonary hypertension.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2007
Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema.
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. ⋯ Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.