• Br J Anaesth · Oct 2018

    Cardiogenic oscillations to detect intratidal derecruitment and overdistension in a porcine model of healthy and atelectatic lungs.

    • S Schumann, L Vimlati, R Kawati, J Guttmann, and M Lichtwarck-Aschoff.
    • Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany. Electronic address: stefan.schumann@uniklinik-freiburg.de.
    • Br J Anaesth. 2018 Oct 1; 121 (4): 928-935.

    BackgroundLow positive end-expiratory pressure (PEEP) can result in alveolar derecruitment, and high PEEP or high tidal volume (VT) in lung overdistension. We investigated cardiogenic oscillations (COS) in the airway pressure signal to investigate whether these oscillations can assess unfavourable intratidal events. COS induce short instantaneous compliance increases within the pressure-volume curve, and consequently in the compliance-volume curve. We hypothesised that increases in COS-induced compliance reflect non-linear intratidal respiratory system mechanics.MethodsIn mechanically ventilated anaesthetised pigs with healthy (n=13) or atelectatic (n=12) lungs, pressure-volume relationships and the ECG were acquired at a PEEP of 0, 5, 10, and 15 cm H2O. During inspiration, the peak compliance of successive COS (CCOS) was compared with intratidal respiratory system compliance (CRS) within incremental volume steps up to the full VT of 12 ml kg-1. We analysed whether CCOS variation corresponded with systolic arterial pressure variation.ResultsCCOS-volume curves showed characteristic intratidal patterns depending on the PEEP level and on atelectasis. Increasing CRS- or CCOS-volume patterns were associated with intratidal derecruitment with low PEEP, and decreasing patterns above 6 ml kg-1 and high PEEP showed overdistension. CCOS was not associated with systolic arterial pressure variations.ConclusionsHeartbeat-induced oscillations within the course of the inspiratory pressure-volume curve reflect non-linear intratidal respiratory system mechanics. The analysis of these cardiogenic oscillations can be used to detect intratidal derecruitment and overdistension and, hence, to guide PEEP and VT settings that are optimal for respiratory system mechanics.Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.