• Neuroscience · Oct 2018

    Motor Sequence Learning in the Brain: The Long and Short of It.

    • C C Gonzalez and M R Burke.
    • Department of Psychology, Thomson Rivers University, 900 McGill Road, Kamloops, BC V2C 0C8, Canada. Electronic address: cgonzalez@tru.ca.
    • Neuroscience. 2018 Oct 1; 389: 85-98.

    AbstractMotor sequence learning involves predictive processing that results in the anticipation of each component of a sequence of actions. In smooth pursuit, this predictive processing is required to decrease tracking errors between the eye and the stimulus. Current models for motor sequence learning suggest parallel mechanisms in the brain for acquiring sequences of differing complexity. We examined this model by comparing shorter versus longer sequences of pursuit eye movements during fMRI. In this way we were able to identify overlapping and distinct brain areas involved in simple versus more complex oculomotor learning. Participants revealed predictive pursuit eye movements from the second presentation of the stimulus in both short and long sequences. Brain imaging results indicated activation of parallel brain areas for the different sequence lengths that consisted of the Inferior Occipital Gyrus and the Cingulate as areas in common. In addition, distinct activation was found in more working memory related brain regions for the shorter sequences (e.g. the middle frontal cortex and dorsolateral prefrontal cortex), and higher activation in the frontal eye fields, supplementary motor cortex and motor cortex for the longer sequences, independent on the number of repetitions. These findings provide new evidence that there are parallel brain areas that involve working memory circuitry for short sequences, and more motoric areas when the sequence is longer and more cognitively demanding. Additionally, our findings are the first to show that the parallel brain regions involved in sequence learning in pursuit are independent of the number of repetitions, but contingent on sequence complexity.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…