• Mol Pain · Jan 2018

    A deep neural network to assess spontaneous pain from mouse facial expressions.

    • Alexander H Tuttle, Mark J Molinaro, Jasmine F Jethwa, Susana G Sotocinal, Juan C Prieto, Martin A Styner, Jeffrey S Mogil, and Mark J Zylka.
    • 1 Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina, Chapel Hill, NC, USA.
    • Mol Pain. 2018 Jan 1; 14: 1744806918763658.

    AbstractGrimace scales quantify characteristic facial expressions associated with spontaneous pain in rodents and other mammals. However, these scales have not been widely adopted largely because of the time and effort required for highly trained humans to manually score the images. Convoluted neural networks were recently developed that distinguish individual humans and objects in images. Here, we trained one of these networks, the InceptionV3 convolutional neural net, with a large set of human-scored mouse images. Output consists of a binary pain/no-pain assessment and a confidence score. Our automated Mouse Grimace Scale integrates these two outputs and is highly accurate (94%) at assessing the presence of pain in mice across different experimental assays. In addition, we used a novel set of "pain" and "no pain" images to show that automated Mouse Grimace Scale scores are highly correlated with human scores (Pearson's r = 0.75). Moreover, the automated Mouse Grimace Scale classified a greater proportion of images as "pain" following laparotomy surgery when compared to animals receiving a sham surgery or a post-surgical analgesic. Together, these findings suggest that the automated Mouse Grimace Scale can eliminate the need for tedious human scoring of images and provide an objective and rapid way to quantify spontaneous pain and pain relief in mice.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…