• Mol Pain · Jan 2018

    Involvement of pro-inflammation signal pathway in inhibitory effects of rapamycin on oxaliplatin-induced neuropathic pain.

    • Zongsheng Duan, Zhenbo Su, Hushan Wang, and Xiaochuan Pang.
    • 1 Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China.
    • Mol Pain. 2018 Jan 1; 14: 1744806918769426.

    AbstractBackground Oxaliplatin is a third-generation chemotherapeutic agent that is commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of oxaliplatin is painful peripheral neuropathy. The purpose of this study was to examine the underlying mechanisms by which mammalian target of rapamycin (mTOR) and its signal are responsible for oxaliplatin-evoked neuropathic pain. Methods Neuropathic pain was induced by intraperitoneal injection of oxaliplatin in rats. ELISA and Western blot analysis were used to examine the levels of pro-inflammatory cytokines (including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α) and the expression of mTOR signal pathway. Results Oxaliplatin increased mechanical and cold sensitivity as compared with control animals ( P < 0.05 vs. control rats). Oxaliplatin also amplified the expression of p-mTOR and mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 and 4E-binding protein 1 in the lumbar dorsal root ganglion. Blocking mTOR using rapamycin attenuated peripheral painful neuropathy observed in oxaliplatin rats ( P < 0.05 vs. vehicle control). This inhibitory effect was accompanied with decreases of IL-1β, IL-6, and TNF-α. In addition, inhibition of phosphatidylinositide 3-kinase (p-PI3K) attenuated the expression of p-mTOR and the levels of pro-inflammatory cytokines in oxaliplatin rats, and this further attenuated mechanical and cold hypersensitivity. Conclusions The data revealed specific signaling pathways leading to oxaliplatin-induced peripheral neuropathic pain, including the activation of PI3K-mTOR and pro-inflammatory cytokine signal. Inhibition of these pathways alleviates neuropathic pain. Targeting one or more of these molecular mediators may present new opportunities for treatment and management of neuropathic pain observed during chemotherapeutic application of oxaliplatin.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…