• Neuroscience · Apr 2015

    Environmental stimulation improves performance in the ox-maze task and recovers Na+,K+-ATPase activity in the hippocampus of hypoxic-ischemic rats.

    • J J Rojas, B F Deniz, C P Schuch, J V Carletti, I Deckmann, R Diaz, C Matté, T M dos Santos, A T Wyse, C A Netto, and L O Pereira.
    • Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil.
    • Neuroscience. 2015 Apr 16;291:118-27.

    AbstractIn animal models, environmental enrichment (EE) has been found to be an efficient treatment for alleviating the consequences of neonatal hypoxia-ischemia (HI). However the potential for this therapeutic strategy and the mechanisms involved are not yet clear. The aim of present study is to investigate behavioral performance in the ox-maze test and Na+,K+-ATPase, catalase (CAT) and glutathione peroxidase (GPx) activities in the hippocampus of rats that suffered neonatal HI and were stimulated in an enriched environment. Seven-day-old rats were submitted to the HI procedure and divided into four groups: control maintained in standard environment (CTSE), control submitted to EE (CTEE), HI in standard environment (HISE) and HI in EE (HIEE). Animals were stimulated with EE for 9 weeks (1 h/day for 6 days/week) and then behavioral and biochemical parameters were evaluated. Present results indicate learning and memory in the ox-maze task were impaired in HI rats and this effect was recovered after EE. Hypoxic-ischemic event did not alter the Na+,K+-ATPase activity in the right hippocampus (ipsilateral to arterial occlusion). However, on the contralateral hemisphere, HI caused a decrease in this enzyme activity that was recovered by EE. The activities of GPx and CAT were not changed by HI in any group evaluated. In conclusion, EE was effective in recovering learning and memory impairment in the ox-maze task and Na+,K+-ATPase activity in the hippocampus caused by HI. The present data provide further support for the therapeutic potential of environmental stimulation after neonatal HI in rats.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.