• Neuroscience · Apr 2015

    Pivotal role of cerebral interleukin-23 during immunologic injury in delayed cerebral ischemia in mice.

    • Y Zheng, D Zhong, H Chen, S Ma, Y Sun, M Wang, Q Liu, and G Li.
    • Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China.
    • Neuroscience. 2015 Apr 2;290:321-31.

    BackgroundInterleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in ischemic stroke. We previously showed that the IL-23/IL-17 axis aggravates immune injury after cerebral infarction in mice. However, IL-23 might activate other cytokines and transcription factor forkhead box P3 (Foxp3) production in cerebral ischemia. We aimed to determine whether IL-23p19 knockdown prevents cerebral ischemic injury by reducing ischemic-induced inflammation.MethodsIschemic stroke models were established by permanent middle cerebral arterial occlusion (pMCAO) in male C57BL/6 mice. In vivo gene knockdown was achieved by intravenous delivery of lentiviral vectors (LVs) encoding IL-23p19 short hairpin RNA (LV-IL-23p19 shRNA). Enzyme-linked immunoassay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed inhibitory efficiency. Behavioral deficits were evaluated by adhesive-removal somatic-sensory test. Brain infarct volume was measured at day 5 after pMCAO by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Expression of IL-17, IL-4, interferon (IFN)-γ and Foxp3 in ischemic brain tissues were detected by qRT-PCR and Western blotting, respectively. Additionally, immunohistochemical staining located cytokines in ischemic brain tissues.ResultsRNA interference knockdown of IL-23p19 resulted in improved neurological function and reduced infarct volume. IL-23p19 knockdown suppressed IL-17 gene and protein expression. Moreover, IL-23p19 deficiency enhanced IFN-γ and Foxp3 expressions in delayed cerebral ischemic mice, and did not impact IL-4 expression. Immunohistochemical staining showed that IL-17, IL-4, IFN-γ and Foxp3-positive cells were located around ischemic lesions of the ipsilateral hemisphere.ConclusionsIL-23p19 knockdown prevents delayed cerebral ischemic injury by dampening the ischemia-induced inflammation, and is a promising approach for clinically managing ischemic stroke.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…