• Neuroscience · Apr 2015

    Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson's disease and in MPP+ -treated MN9D cells in vitro.

    • M Sivasubramanian, N Kanagaraj, S T Dheen, and S S W Tay.
    • Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117594, Singapore.
    • Neuroscience. 2015 Apr 2;290:636-48.

    AbstractDysregulation of sphingolipid metabolism has been shown to trigger the pathophysiology of many neurodegenerative disorders. The present study focuses on the role of one of the two sphingosine kinases, Sphk2 and its metabolite sphingosine-1-phosphate (S1P) signaling in Parkinson's disease (PD). Our study indicated a marked down regulation of Sphk2 expression in the substantia nigra region of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and in the cellular PD model. Localization studies indicated that Sphk2 was predominantly present in mitochondria, proposing for its potential role in mitochondrial functions. Since mitochondrial dysfunction has been described to be the major pathological event in PD, the present study focused on the role of Sphk2/S1P signaling in promoting mitochondrial functions in the MPTP-induced mouse model of PD and in 1-methyl-4 phenylpyridinium (MPP(+))-treated MN9D cells. Our study demonstrated that inhibition of Sphk2 decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and its downstream targets nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) which are the key genes regulating mitochondrial function. In addition, there was also a significant reduction in the total cellular adenosine triphosphate (ATP) and superoxide dismutase 2 (SOD 2) with an associated increase in levels of reactive oxygen species (ROS) in the absence of Sphk2. Interestingly, it was found that treating the cells with exogenous S1P along with MPP(+) exerted a neuroprotective effect by activation of p-CREB, PGC-1α and NRF-1 in the MN9D cells. Moreover, the level of ATP was unaffected in the MPP(+)-treated cells in the presence of S1P. It was also observed that levels of ROS were significantly decreased in the MPP(+)-treated cells in the presence of exogenous S1P. Our study also demonstrated that S1P exerted its protective effect through the S1P1 receptor. Taken together, these results show that Sphk2/S1P has an important role to play in the survival of the dopaminergic neurons, in the pathogenesis of PD.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…