• Neuroscience · Apr 2015

    Transforming growth factor-beta in the red nucleus plays antinociceptive effect under physiological and pathological pain conditions.

    • J Wang, J Yu, C-P Ding, S-P Han, X-Y Zeng, and J-Y Wang.
    • Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
    • Neuroscience. 2015 Apr 16;291:37-45.

    AbstractPrevious studies have demonstrated that the red nucleus (RN) participates in the modulation of neuropathic pain and plays both a facilitated role by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β), and an inhibitory role through the anti-inflammatory cytokine IL-10. In this study, we sought to investigate the expressions and roles of transforming growth factor-beta (TGF-β), a potent anti-inflammatory cytokine, as well as its type 1 receptor (TGF-β-R1) in the RN in normal and neuropathic pain rats. Immunohistochemistry showed that TGF-β and TGF-β-R1 were constitutively expressed in the RN of normal rats, and co-localized with neurons and all three glial cell types, astrocytes, microglia and oligodendrocytes. Following spared nerve injury (SNI), the expression levels of TGF-β and TGF-β-R1 were significantly down-regulated in the RN contralateral (but not ipsilateral) to the nerve injury side of rats at one week and reached the lowest level at two weeks after SNI, and both of them were co-localized with neurons and oligodendrocytes but not with astrocytes and microglia. Microinjection of different doses of anti-TGF-β antibody (250, 125, 50 ng) into the unilateral RN of normal rats dose-dependently decreased the mechanical withdrawal threshold of contralateral (but not ipsilateral) hind paw and induced significant mechanical hypersensitivity, which was similar to mechanical allodynia induced by peripheral nerve injury. In contrast, microinjection of different doses of recombinant rat TGF-β1 (500, 250, 100 ng) into the RN contralateral to the nerve injury side of SNI rats dose-dependently increased the paw withdrawal threshold and significantly alleviated mechanical allodynia induced by SNI. These results suggest that TGF-β in the RN participates in nociceptive processing and plays antinociceptive effects under normal physiological condition and in the development of neuropathic pain induced by SNI.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.