-
- A Md Sheikh, M Michikawa, S U Kim, and A Nagai.
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan.
- Neuroscience. 2015 Apr 30;292:159-69.
AbstractOligomer formation is considered as a critical process for the neurotoxic effects of Alzheimer's amyloid β (Aβ) peptide. Previously we have demonstrated that lysophosphatidylcholine (LPC) increases the oligomer formation of Aβ1-42, the major Aβ peptide found Alzheimer's disease (AD) lesions. In this study, we have investigated whether LPC affects the neurotoxic effects of Aβ1-42 in a neuronal cell line (A1) culture. Dimethyl thiazolyl diphenyl tetrazolium (MTT) assay revealed that up to 10μM concentration, LPC did not affect A1 cell viability. Aβ1-42 decreased the cell viability, and such effect was dose dependently enhanced by LPC. However, neither LPC nor Aβ1-42, alone or in combination increased lactate dehydrogenase (LDH) release from A1 cells after 24-h treatment. Terminal deoxynucleotidyl transferase dUTP-biotin nick-end-labeling (TUNEL) assay showed that LPC increased Aβ1-42-induced apoptotic cell number. To determine the underlying mechanisms, the proteins implicated in apoptosis pathways including Bcl-2- and caspase-family were analyzed by Western blotting. The results demonstrated that Aβ1-42 decreased Bcl-2 in A1 cells at 24h, whereas LPC had no effect at any time point. Both LPC and Aβ1-42 increased Bax level at 24h, and their combined stimulation showed a synergistic effect. Similar synergistic effect of LPC and Aβ1-42 on caspase9 activation was observed. Dot blot immunoassay and Western blotting showed that LPC augmented Aβ1-42 oligomer formation in cell culture medium. Removing LPC-induced early-formed Aβ1-42 oligomer from the culture medium by immunoprecipitation decreased active caspase9 level and neurotoxicity, as revealed by Western blotting and MTT assay. Furthermore, dihydroethidium (DHE) assay showed that Aβ1-42 increased reactive oxygen species level in A1 cells, such effect was further enhanced by LPC. Thus, our results demonstrated that LPC increased the oligomer formation process of Aβ1-42 peptide in culture condition, and consequently increased apoptotic neuronal death. Such process might be important for the pathogenesis of AD, and inhibition of LPC generation could be a therapeutic target for the disease.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.