Mice develop weight-bearing locomotion within the first 2-3 weeks of birth, a period during which motoneurons (MNs) and interneurons (INs) that control locomotor activities undergo rapid maturation. In this study, we investigate the maturation of two subpopulations of V3 INs in the mouse spinal cord during this period. To do this, we conducted whole-cell patch-clamp recordings of tdTomato fluorescent protein-expressing spinal V3 INs from Sim1(Cre/+);tdTom mice at post-natal day (P) 0, P4, P9 and P14 and compared their properties to those at P21. ⋯ We further reveal that there are multiple developmental phases of both V3 subpopulations during the maturation process. The different developmental trajectories of physiological properties also coincide with changes in an animal's locomotor behavior. These properties likely reflect the differential functions of V3 subpopulations in maturing spinal locomotor circuits.