• Neuroscience · Jun 2015

    Simulation of the capacity and precision of working memory in the hypodopaminergic state: Relevance to schizophrenia.

    • T Okimura, S Tanaka, T Maeda, M Kato, and M Mimura.
    • Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
    • Neuroscience. 2015 Jun 4;295:80-9.

    AbstractWorking memory (WM) impairment has received attention as a behavioral characteristic of schizophrenia. Neurobiological studies have led to the hypothesis that a deficit in dopamine transmission through D1 receptors in the prefrontal cortex (PFC) is associated with WM impairment in schizophrenia. However, empirical approaches that aim to clarify the nature of the impairment and its underlying mechanism are difficult to enact, especially in unmedicated patients. By contrast, computational approaches using biologically plausible models have formed a powerful theoretical framework for the study of WM impairment in schizophrenia. This article attempts to directly connect neurobiological findings to the neuropsychological behaviors present in patients with schizophrenia. Using a biologically plausible prefrontal cortical circuit model, we simulated sustained activity during a simultaneous, multi-target WM task. We subsequently analyzed how dopaminergic modulation via D1 receptor activation alters the capacity and precision of WM and investigated the underlying mechanism. Hypodopaminergic modulation resulted in imprecision and a reduced capacity in WM primarily due to decreased N-methyl-d-aspartate (NMDA) conductance. Increasing NMDA conductance ameliorated both impairments. These results account for the mechanism that underlies WM impairments in schizophrenia and provide a theoretical basis for combination therapy with antipsychotic drugs and drugs that enhance NMDA receptor function, which is expected to be effective for the treatment of WM impairments in these patients. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.