-
- J V Jacobs, G Wu, and K M Kelly.
- Department of Rehabilitation and Movement Science, University of Vermont, 305 Rowell Building, 106 Carrigan Drive, Burlington, VT 05405, USA. Electronic address: jjacobs@uvm.edu.
- Neuroscience. 2015 Jul 9;298:1-11.
AbstractThe role of the cerebral cortex in maintaining human standing balance remains unclear. Beta corticomuscular coherence (CMC) provides a measure of communication between the sensory-motor cortex and muscle, but past literature has not demonstrated significant beta CMC during human stance. This study evaluated the effects of stance width, vision, and surface compliance on beta CMC during human stance using methods to enhance sensitivity to CMC. Ten healthy, young adults stood for three 60-s trials in each of a wide or narrow stance width while on a firm surface and in narrow stance on a foam surface, each with eyes open or closed. Beta CMC was calculated between contralateral electroencephalographic and electromyographic recordings. Electromyography was recorded from bilateral tibialis anterior and gastrocnemius lateralis muscles. CMC magnitude was defined as the average integrated area of coherence spectrum above a significance threshold. Measures of center-of-pressure (COP) sway were derived from force plates under the subjects' feet. Results of CMC from four muscles across six stance conditions (a total of 24 combinations) demonstrated significant average CMC magnitude from every subject in 20 combinations and significant average CMC magnitude in nine of 10 subjects in the remaining four combinations. The CMC magnitude was significantly larger in the wide-stance condition than in the narrow-stance condition with eyes open. No significant differences were detected when comparing eyes-open to eyes-closed conditions or when comparing firm- to foam-surface conditions. Correlations between CMC magnitude and COP sway elicited some significant relationships, but there was no consistent direction or pattern of correlation based on muscle or stance condition. Results demonstrate that significant beta CMC is evident during human standing balance, and that beta CMC is responsive to changes in mechanical, but not visual or surface, conditions.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.