• Eur J Pain · Apr 2019

    Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway.

    • Sajad Fakhri, Leila Dargahi, Fatemeh Abbaszadeh, and Masoumeh Jorjani.
    • Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
    • Eur J Pain. 2019 Apr 1; 23 (4): 750-764.

    BackgroundSpinal cord injury (SCI) causes continuous neurological deficits and major sensory-motor impairments. There is no effective treatment to enhance sensory-motor function following SCI. Thus, it is crucial to develop novel therapeutics for this particular patient population. Astaxanthin (AST) is a strong antioxidant, anti-inflammatory and anti-apoptotic agent. In the present study, it was tested in a severe compression SCI model with emphasis on sensory-motor outcomes, signalling pathway, along with other complications.MethodsA severe SCI was induced by compression of the rat thoracic spinal cord with an aneurysm clip and treatment with AST or the vehicle was carried out, 30 min after injury. Behavioural tests including open field, von Frey, hot plate and BBB were performed weekly to 28 days post-injury. Rats were assigned to measure blood glucose, weight and auricle temperature. Western blot and histological analysis also were performed at the same time points.ResultsAST decreased mechanical and thermal pain and also improved motor function performance, reduced blood glucose and auricle temperature increases and attenuated weight loss in SCI rats. Western blot analysis showed decreased activation of ERK1/2 and increased activation of AKT following AST treatment. The histology results revealed that AST considerably preserved myelinated white matter and the number of motor neurons following SCI.ConclusionTaken together, the beneficial effects of AST to improve sensory-motor outcomes, attenuate pathological tissue damage and modulate ERK and AKT signalling pathways following SCI, suggest it as a strong therapeutic agent towards clinical applications.SignificanceSpinal cord injury (SCI) impairs sensory-motor function and causes complications, which astaxanthin (AST) has the potential to be used as a treatment for. The present study investigates the effects of AST in a compression model of SCI with emphasis on sensory-motor outcomes alongside other complications, histopathological damage and also related signalling pathways.© 2018 European Pain Federation - EFIC®.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.