• Foot Ankle Int · Feb 2017

    Comparative Study

    Biomechanical Comparison of 3 Current Ankle Syndesmosis Repair Techniques.

    • Thomas O Clanton, Scott R Whitlow, Brady T Williams, Daniel J Liechti, Jonathon D Backus, Grant J Dornan, Adriana J Saroki, Travis Lee Turnbull, and Robert F LaPrade.
    • 1 Steadman Philippon Research Institute, Vail, CO, USA.
    • Foot Ankle Int. 2017 Feb 1; 38 (2): 200-207.

    BackgroundSignificant debate exists regarding optimal repair for unstable syndesmosis injuries. Techniques range from screw fixation, suture-button fixation, or a combination of the two. In this study, 3 common repairs were compared using a simulated weightbearing protocol with internal and external rotation of the foot.MethodsTwenty-four lower leg specimens with mean age 54 years (range, 38-68 years) were used for testing. Following creation of a complete syndesmotic injury (AITFL, ITFL, PITFL, interosseous membrane), specimens were repaired using 1 of 3 randomly assigned techniques: (1) one 3.5-mm syndesmotic screw, (2) 1 suture-button construct, and (3) 2 divergent suture-button constructs. Repairs were cycled for 500 cycles between 7.5 Nm of internal/external rotation torque under a constant 750 N axial compressive load in a neutral dorsiflexion position. At 0, 10, 100, and 500 cycles, torsional cyclic loading was interrupted to assess torsional resistance to rotation within a physiologic range of motion (15 degrees external rotation to 10 degrees internal rotation). Torque (Nm), rotational position (degrees), and 3-dimensional data were collected throughout the testing to characterize relative spatial relationships of the tibiofibular articulation.ResultsThere were no significant differences between repair techniques in resistance to internal and external rotation with respect to the intact syndesmosis. Three-dimensional analysis revealed significant differences between repair techniques for sagittal fibular translation with external rotation of the foot. Screw fixation had the smallest magnitude of posterior sagittal translation (2.5 mm), and a single suture-button construct demonstrated the largest magnitude of posterior sagittal translation (4.6 mm). Screw fixation also allowed for significantly less anterior sagittal translation with internal rotation of the foot (0.1 mm) when compared to both 1 (2.7 mm) and 2 (2.9 mm) suture-button constructs.ConclusionAll repairs provided comparable rotational stability to the syndesmosis; however, no repair technique completely restored rotational stability and tibiofibular anatomic relationships of the preinjury state.Clinical RelevanceConstructs were comparable across most conditions; however, when repairing injuries with a suture-button construct, a single suture-button construct may not provide sufficient resistance to sagittal translation of the fibula.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.