• Neuroscience · Feb 2019

    Neonatal Lipopolysaccharide Challenge Induces Long-lasting Spatial Cognitive Impairment and Dysregulation of Hippocampal Histone Acetylation in Mice.

    • Luofang Peng, Maoen Zhu, Yong Yang, Yingqi Weng, Wangyuan Zou, Xiaoyan Zhu, Qulian Guo, and Tao Zhong.
    • Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City 410008, Hunan Province, PR China.
    • Neuroscience. 2019 Feb 1; 398: 76-87.

    AbstractNeonatal inflammation induces long-term effects on brain function. We investigated the effects of systematic neonatal inflammation using lipopolysaccharide (LPS) injection at postnatal day 3 (P3) and P5 in a mouse model of spatial memory capacity measured using a Morris water maze (MWM) task in adulthood. Subsequently, we assessed histone acetylation and immediate-early response gene expression (c-Fos and brain-derived neurotrophic factor) in the hippocampus in response to MWM acquisition training. The LPS-treated mice exhibited a significant spatial cognitive impairment, which was accompanied by insufficient histone acetylation of the H4K12-specific lysine residue and repressed c-Fos gene expression immediately after acquisition training. Moreover, the enrichment of acetyl-H4K12 on the c-Fos promoter following acquisition training was decreased in LPS-treated mice. Administration of trichostatin A (TSA), a histone deacetylase inhibitor, 2 h before each MWM acquisition training session effectively enhanced hippocampal histone acetylation levels and enrichment of acetyl-H4K12 on the c-Fos promoter following acquisition training in LPS-treated mice. TSA also increased c-Fos gene expression underlying synaptic plasticity and memory formation, and consequently rescued impaired spatial cognitive function. These results indicate that the dysregulation of H4K12 acetylation during the ongoing process of memory formation plays a key role in the spatial cognitive impairment associated with a neonatal LPS challenge. The histone deacetylase inhibitor TSA exhibits therapeutic potential for treating cognitive impairment induced by neonatal inflammation, by means of improving hippocampal histone acetylation and downstream c-Fos gene expression in response to a learning task.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…