• Neuroscience · Feb 2019

    Expression of Calretinin Among Different Neurochemical Classes of Interneuron in the Superficial Dorsal Horn of the Mouse Spinal Cord.

    • Maria Gutierrez-Mecinas, Olivia Davis, Erika Polgár, Mahvish Shahzad, Keila Navarro-Batista, Takahiro Furuta, Masahiko Watanabe, David I Hughes, and Andrew J Todd.
    • Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
    • Neuroscience. 2019 Feb 1; 398: 171-181.

    AbstractAround 75% of neurons in laminae I-II of the mouse dorsal horn are excitatory interneurons, and these are required for normal pain perception. We have shown that four largely non-overlapping excitatory interneuron populations can be defined by expression of the neuropeptides neurotensin, neurokinin B (NKB), gastrin-releasing peptide (GRP) and substance P. In addition, we recently identified a population of excitatory interneurons in glabrous skin territory that express dynorphin. The calcium-binding protein calretinin is present in many excitatory neurons in this region, but we know little about its relation to these neuropeptide markers. Here we show that calretinin is differentially expressed, being present in the majority of substance P-, GRP- and NKB-expressing cells, but not in the neurotensin or dynorphin cells. Calretinin-positive cells have been implicated in detection of noxious mechanical stimuli, but are not required for tactile allodynia after neuropathic pain. Our findings are therefore consistent with the suggestion that neuropathic allodynia involves the neurotensin and/or dynorphin excitatory interneuron populations. Around a quarter of inhibitory interneurons in lamina I-II contain calretinin, and recent transcriptomic studies suggest that these co-express substance P. We confirm this, by showing that inhibitory Cre-expressing cells in a Tac1Cre knock-in mouse are calretinin-immunoreactive. Interestingly, there is evidence that these cells express low levels of peptidylglycine alpha-amidating monooxygenase, an enzyme required for maturation of neuropeptides. This may explain our previous finding that although the substance P precursor preprotachykinin A can be detected in some inhibitory interneurons, very few inhibitory axonal boutons are immunoreactive for substance P.Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.