• Neuroscience · Feb 2019

    The Acute Influence of Acid Suppression with Esomeprazole on Gastrointestinal Microbiota and Brain Gene Expression Profiles in a Murine Model of Restraint Stress.

    • Robert MacLaren, Richard A Radcliffe, Edward T Van Matre, Charles E Robertson, Diana Ir, and Daniel N Frank.
    • Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, C238, 12850 East Montview Blvd, Aurora, CO 80045, USA. Electronic address: rob.maclaren@ucdenver.edu.
    • Neuroscience. 2019 Feb 1; 398: 206-217.

    AbstractThe central nervous system (CNS) and gastrointestinal tract (GIT) are linked through neuro-endocrine and humoral pathways. Critically ill patients suffer severe physical and emotional stress and frequently receive acid suppressants; however, stress and acid suppression may alter GIT microbiota. This study evaluated the effects of acid suppression on the GIT microbiota and genome-wide expression of brain-specific genes in a murine model of restraint stress. Twenty-four male C57BL/6J mice were randomly assigned to three days of restraint stress by hypothermic immobilization or control environment for three hours daily and either esomeprazole 2 mg/kg or saline by intraperitoneal injection daily. Bacterial communities associated with the stomach, ileum, cecum, and mid-colon were determined by broad-range 16S rRNA gene sequencing, while RNA-sequencing assessed mRNA expression in the hippocampus. Both stress (p < 0.001) and esomeprazole (p = 0.006) had significant, independent effects on the composition of stomach microbiota. Stress had no impact on the hippocampus but the addition of esomeprazole induced differential expression of 124 genes, many of which are involved in cognitive and behavior pathways. Gene expression was correlated with the abundances of multiple microbial families. Acute stress has region-specific effects on the distribution of GIT commensal bacteria which is heightened with acid suppression. Several key biological processes in the hippocampus that are needed for neurocognition are affected by dysbiosis caused by acid suppression during stress. Further studies should evaluate associations between microbiota, host gene expression, the abundance of CNS neurocognitive modulators, and their impact on cognition and behavior.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…