• Neuroscience · Feb 2019

    PARP Inhibitor Affects Long-term Heat-stress Response via Changes in DNA Methylation.

    • Tomer Cramer, Tali Rosenberg, Tatiana Kisliouk, and Noam Meiri.
    • Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon 7528809, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Science, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
    • Neuroscience. 2019 Feb 10; 399: 65-76.

    AbstractResilience to stress can be obtained by adjusting the stress-response set point during postnatal sensory development. Recent studies have implemented epigenetic mechanisms to play leading roles in improving resilience. We previously found that better resilience to heat stress in chicks can be achieved by conditioning them to moderate heat stress during their critical developmental period of thermal control establishment, 3 days posthatch. Furthermore, the expression level of corticotropin-releasing hormone (CRH) was found to play a direct role in determining future resilience or vulnerability to heat stress by alterations in its DNA-methylation and demethylation pattern. Here we demonstrate how intraperitoneal injection of poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) influences the DNA methylation pattern, thereby affecting the long-term heat-stress response. Single PARPi administration, induced a reduction in both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), without affecting body temperature. The accumulated effect of three PARPi doses brought about a long-term decrease in 5mC% and 5hmC%. These changes coincided with a reduction in body temperature in non-conditioned chicks, similar to that occurring in moderately conditioned heat-stress-resilient chicks. The observed changes in DNA methylation can be explained by decreased activity of the enzyme DNA methyltransferase as a result of the PARPi injection. Furthermore, evaluation of the DNA-methylation pattern along the CRH intron showed a reduction in 5mC% as a result of PARPi treatment, alongside a reduction in CRH mRNA expression. Thus, PARPi treatment can affect DNA methylation, which can alter hypothalamic-pituitary-adrenal (HPA) axis anchors such as CRH, thereby potentially enhancing long-term resilience to heat stress.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.