-
- Dorit Möhrle, Benedikt Hofmeier, Mario Amend, Stephan Wolpert, Kun Ni, Dan Bing, Uwe Klose, Bernd Pichler, Marlies Knipper, and Lukas Rüttiger.
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany. Electronic address: dorit.moehrle@googlemail.com.
- Neuroscience. 2019 May 21; 407: 146-169.
AbstractFor successful future therapeutic strategies for tinnitus and hyperacusis, a subcategorization of both conditions on the basis of differentiated neural correlates would be of invaluable advantage. In the present study, we used our refined operant conditioning animal model to divide equally noise-exposed rats into groups with either tinnitus or hyperacusis, with neither condition, or with both conditions co-occurring simultaneously. Using click stimulus and noise burst-evoked Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions, no hearing threshold difference was observed between any of the groups. However, animals with neither tinnitus nor hyperacusis responded to noise trauma with shortened ABR wave I and IV latencies and elevated central neuronal gain (increased ABR wave IV/I amplitude ratio), which was previously assumed in most of the literature to be a neural correlate for tinnitus. In contrast, animals with tinnitus had reduced neural response gain and delayed ABR wave I and IV latencies, while animals with hyperacusis showed none of these changes. Preliminary studies, aimed at establishing comparable non-invasive objective tools for identifying tinnitus in humans and animals, confirmed reduced central gain and delayed response latency in human and animals. Moreover, the first ever resting state functional Magnetic Resonance Imaging (rs-fMRI) analyses comparing humans and rats with and without tinnitus showed reduced rs-fMRI activities in the auditory cortex in both patients and animals with tinnitus. These findings encourage further efforts to establish non-invasive diagnostic tools that can be used in humans and animals alike and give hope for differentiated classification of tinnitus and hyperacusis.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.