-
- M J Tsai, S K Tsai, M C Huang, D Y Liou, S L Huang, W H Hsieh, W C Huang, S S Huang, and H Cheng.
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taiwan; Center for Neural Regeneration, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taiwan. Electronic address: mjtsai2@vghtpe.gov.tw.
- Neuroscience. 2015 Oct 1; 305: 238-47.
AbstractAcidic fibroblast growth factor (aFGF) is a neurotrophic factor which is a powerful neuroprotective and neuroregenerative factor of the nervous system. Prior study had shown that levels of FGFs significantly increase following ischemic injury, reflecting a physiological protection mechanism. However, few reports demonstrated the efficacy of applying aFGF in cerebral ischemia. A recent report showed that the intranasal aFGF treatment improved neurological functional recovery; however, it did not significantly reduce the lesion size in ischemic rats. The present study examines the neuroprotective effect of aFGF on cortical neuron-glial cultures under oxygen glucose deprivation (OGD)-induced cell damage and investigates whether epidural application of slow-released aFGF could improve benefit on ischemic stroke injury in conscious rats. We used a topical application of aFGF mixed in fibrin glue, a slow-release carrier, over the peri-ischemic cortex and examined such treatment on cerebral infarction and behavioral impairments of rats subjected to focal cerebral ischemia (FCI). Results demonstrate that aFGF effectively protected cortical neuron-glial cultures from OGD-induced neuronal damage. Neurite extension from cortical neurons was significantly enhanced by aFGF, mediated through activation of AKT and ERK. In addition, topical application of fibrin glue-mixed aFGF dose-dependently reduced ischemia-induced brain infarction and improved functional restoration in ischemic stroke rats. Slow-released aFGF not only protected hippocampal and cortical cell loss but reduced microglial infiltration in FCI rats. Our results suggest that aFGF mixed in fibrin glue could prolong the protective/regenerative efficacy of aFGF to the damaged brain tissue and thus improve the functional restorative effect of aFGF.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.