• Neuroscience · Aug 2018

    Suppression of Pax2 Attenuates Allodynia and Hyperalgesia through ET-1-ETAR-NFAT5 Signaling in a Rat Model of Neuropathic Pain.

    • Lydia Wai Tai, Zhiqiang Pan, Liting Sun, Haobo Li, Pan Gu, Wong Stanley Sau Ching SSC Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The Universi, Sookja K Chung, and Chi Wai Cheung.
    • Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China.
    • Neuroscience. 2018 Aug 1; 384: 139-151.

    AbstractEndothelin-1 (ET-1) and its receptors (ETAR/ETBR) emerge to be a key signaling axis in neuropathic pain processing and are recognized as new therapeutic targets. Yet, little is known on the functional regulation of ET-1 axis during neuropathic pain. Bioinformatics analysis indicated that paired box gene 2 (Pax2) or nuclear factor of activated T-cells 5 (NFAT5), two transcription factors involved in the modulation of neurotransmission, may regulate ET-1. Therefore, we hypothesized that ET-1 axis may be regulated by Pax2 or NFAT5 in the development of neuropathic pain. After partial sciatic nerve ligation (pSNL), rats displayed allodynia and hyperalgesia, which was associated with increased mRNA and protein expressions of spinal Pax2, NFAT5, and mRNA levels of ET-1 and ETAR, but not ETBR. Knockdown of Pax2 or NFAT5 with siRNA, or inhibition of ETAR with BQ-123 attenuated pSNL-induced pain-like behaviors. At molecular level, Pax2 siRNA, but not NFAT5 siRNA, downregulated ET-1 and ETAR, while ETAR inhibitor reduced NFAT5, indicating Pax2 in the upstream of ET-1 axis with NFAT5 in the downstream. Further, suppression of Pax2 (inhibiting ET-1) or impairment of ET-1 signaling (inhibition of ETAR and/or decrease of NFAT5) deactivated mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, supporting the significance of functional regulation of ET-1 axis in neuropathic pain signaling. These findings demonstrate that Pax2 targeting ET-1-ETAR-NFAT5 is a novel regulatory mechanism underlying neuropathic pain.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.