• Neuroscience · Aug 2018

    Distinct Roles of NMDAR and mGluR5 in Light Exposure Reversal of Feedforward Synaptic Strength in V1 of Juvenile Mice after Binocular Vision Deprivation.

    • Xiaoxiu Tie, Shuo Li, Yilin Feng, Biqin Lai, Sheng Liu, and Bin Jiang.
    • Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
    • Neuroscience. 2018 Aug 1; 384: 131-138.

    AbstractIn the visual cortex, sensory deprivation causes global augmentation of the amplitude of AMPA receptor-mediated miniature EPSCs in layer 2/3 pyramidal cells and enhancement of NMDA receptor-dependent long-term potentiation (LTP) in cells activated in layer 4, effects that are both rapidly reversed by light exposure. Layer 2/3 pyramidal cells receive both feedforward input from layer 4 and intra-cortical lateral input from the same layer, LTP is mainly induced by the former input. Whether feedforward excitatory synaptic strength is affected by visual deprivation and light exposure, how this synaptic strength correlates with the magnitude of LTP in this pathway, and the underlying mechanism have not been explored. Here, we showed that in juvenile mice, both dark rearing and dark exposure reduced the feedforward excitatory synaptic strength, and the effects can be reversed completely by 10-12 h and 6-8 h light exposure, respectively. However, inhibition of NMDA receptors by CPP or mGluR5 by MPEP, prevented the effect of light exposure on the mice reared in the dark from birth, while only inhibition of NMDAR prevented the effect of light exposure on dark-exposed mice. These results suggested that the activation of both NMDAR and mGluR5 are essential in the light exposure reversal of feedforward excitatory synaptic strength in the dark reared mice from birth; while in the dark exposed mice, only activation of NMDAR is required.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.